decryptor user guide (v 1.1.3)

Miroslav Hruska

December 29, 2017

Contents

1	Intr	oduction	2
	1.1	Applications	2
	1.2		2
2	Brov	vsing results	3
	2.1	Login	3
		2.1.1 Root page	3
		2.1.2 Login page	5
	2.2	Navigation	6
		2.2.1 Experiment view	6
		2.2.2 Protein view	12
		2.2.3 Peptide view	15
3	Tasl	submission	16
	3.1	Submission	16
	3.2	Selection of results	18

1 Introduction

decryptor is a computational system used for detection of variant peptides in *standard* shotgun proteomics data. **decryptor** can be used without sequencing data, as opposed to the more prevalent proteogenomics approach. The detection of variant peptides is thus not guided. In this respect, it enables universal applicability for most shotgun proteomics data. On the other hand, the data are required to be measured with great depth. This is because rare peptides are more common in deeper measurements. In particular, it is expected to detect more than double variant peptides if double of spectra was measured.

1.1 Applications

Unaided detection of variant peptides has variety of potential applications. For instance, variant peptides resulting from somatic variant can be used as tumour-specific biomarkers for monitoring of progression of disease. Germline variants can be used for establishment of origin of sample.

1.2 Word of caution

The detection of variant peptides is a complicated problem and **decryptor** might give false positives. The most reliably detected variant peptides are polymorphic peptides of population frequency higher than 1%. Therefore extra care should be taken in evaluation of identified somatic variants.

2 Browsing results

This section introduces navigation, applicable to already available results. Herein, it is exemplified over guest account, such that each step can be performed without registration. For actual submission of results see the next section.

2.1 Login

2.1.1 Root page

decryptor's main page informs about its use, i.e., identification of variant peptides, their genomic origin and report of metadata associated with identified variants. Note that there is no need for registration to explore this functionality. We'll continue by using "log-in" link.

decryptor (1.1) analyses data from tandem mass spectrometry of human proteome for presence of point alterations. Subsequently, decryptor deduces DNA/mRNA alterations whenever possible.

> See example. (email: guest, password: guest).

To use decryptor, you need to log-in. If not registered yet, sign-up.

Materials | Release notes | Changelog | Acknowledgement | Contact us

2

2.1.2 Login page

We'll login by providing guest account credentials.

0	Please log in to access this page.
Login	
Email Address	
guest	
Password	
••••	
	Login

Menu

- Login
- Register
- Forgot passwordConfirm account

2.2 Navigation

2.2.1 Experiment view

Overall results and their filtering The login lands on experiment view, which corresponds to overall view over evaluated sample (in this case, example). In the following figure, the "Filter results" was expanded. The filters give users additional control over selection of results but can be also used in predefined way (Default/Strict). The standard "Default" filter is one which should preserve most of the true result there, however lacking specificity. The "Strict filter", on the other hand, should give results which are confident. To see explanation of particular fields, hover mouse over the "(?)" symbol, or continue reading following paragraphs.

X!Tandem E-Value The filter refers to minimal statistical significance of spectral match (XTandem's HyperScore) to report spectral match. Note however, that the *value does not directly relate to probability that interpretation is correct*. However, as a guideline, at significance level of 0.1, one would expect around 90% of correct results on variant peptides of population frequency higher than 1%. Note however, that this does not extend intuitively for variant peptides of lower population frequency or somatic variants.

PepNovo+ Tag Support Count For identification, **decryptor** is tries to read the peptide sequence directly from the spectrum. The sequencing is performed in form of short subsequences, so-called peptide tags (here, set of length of three). These tags are evaluated for correspondence with the peptide sequencing as matched using database search in X!Tandem.

PTM-Free neighborhood The value corresponds to the number of amino acid residues neighboring the variant amino acid

to contain no post-translational modifications of mass corresponding to mass of substitution. Thus for instance, if there is a candidate modification of $N \rightarrow D$, but there exist *Deamidation* of N, such variant is not reported. Similarly, often $A \rightarrow S$ happens, but its mass is similar to that of *Oxidation*. Therefore, if M is nearby, it is more likely the *Oxidation* of M than the variant peptide.

Least peptide count Minimal number of peptides per protein, for the protein to be reported. Due proteolysis, all peptides from protein are in the sample, or none; therefore it is unlikely that some peptide will be identified without corresponding reference peptides. Therefore, one would expect at least one other reference peptide for variant peptide identified.

Experiment view

Experiment: SILAC_R1-13_TR-C_

ID: 85bce16568e395e6_0000

Filter results

Filtering presets:	Strict	Default	No filter
(?) Miminal XITandem -Log10 E-Value:	1.0		
(7) Minimal PepNovo+ Tag Support Count:	1		
(?) Candidate PTMs alternative explanation:			
(?) PTM-Free neighborhood:	0		
(?) Least distinct peptide count for protein:	2		
Filter results			
Experimental meta-information			
Export results			

Identification

Summary: 988 proteins, 4539 ref. peptides, 18 non-ref. peptides, 16371 spectra

Experimental meta-information The experiment also contains meta-information which was filled in during the submission of the task to help organize the searches. See the next section.

Filter results...

Experimental meta-information

Parameter	Value
Fragmentation	CID
Protease	trypsin
Fragment tolerance	0.5 Da
Variable modifications	Oxidation (M)
Experiment info	SILAC_R1-13_TR-C_
ql	127.0.0.1
Mail	hruska.miro@gmail.com
Fixed modifications	Carbamidomethyl (C)
Precursor tolerance	10 ppm

Export results

Proteins with alterations The most important view consists of proteins with claimed detected peptides. The view contains information about protein, the number of spectra (quantitative information) and peptides (number of distinct peptides per protein) identified. The detrimental effect over protein is aggregated value of predicted detrimental effect of individual variants (as calculated using dbNSFP, v 2.5). Disease relevance column contains information whether particular protein was linked to disease or in cancer (e.g., being an oncogene).

¢ Protein	Spectra / Peptides / Unique peptides	¢ Alterations	Detrimental effect	DNA/mRNA alteration source	¢ Disease relevance
lactate dehydrogenase B (LDHB)	106/13/13	251: A>S 252: I>L	1.39		
malate dehydrogenase 2, NAD (mitochondrial) (MDH2)	51/11/11	235: V>I	0.67	COSMIC v.68 — endometrium ICGC 15.1— UCEC-US	
RNA terminal phosphate cyclase-like 1 (RCL1)	4/3/3	106: V>I	0.62	COSMIC v.68 — large_intestine	
eukaryotic translation elongation factor 1 alpha 1 (EEF1A1)	6/4/4	231: L>V	0.60	COSMIC v.68 —liver ICGC 15.1— LINC-JP	
phosphoglycerate kinase 1 (unknown)	10/7/7	86: S>T	0.54	COSMIC v.68 —kidney	
family with sequence similarity 192, member A (FAM192A)	5/3/3	47: V>I	0.49	ICGC 15.1— SKCM-US	

Proteins with sequence alterations

Reference proteins The rest of the view contains information about identified reference proteins.

Reference proteins

Protein	Spectra / Peptides / Unique peptides	
voltage-dependent anion channel 1 (VDAC1)	52/10/10	
isocitrate dehydrogenase 3 (NAD+) alpha (unknown)	39/10/10	
coproporphyrinogen oxidase (CPOX)	33 / 14 / 14	t a the
pyrophosphatase (inorganic) 1 (PPA1)	29/9/9 O Gra	
methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (unknown)	28/9/9 O Sele	
guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (GNB2L1)	27/11/11 Effects	
ribosomal protein L5 (RPL5)	27 / 11 / 11 Include poi	
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa (unknown)	26 / 15 / 15 Include the	
enolase 1, (alpha) (ENO1)	26 / 10 / 10	Nor
UDP-galactose-4-epimerase (GALE)	23/9/9	
pyrroline-5-carboxylate reductase family, member 2 (PYCR2)	23/7/7	
transaldolase 1 (TALDO1)	22/10/10	

2.2.2 Protein view

Overall view The protein view contains information relevant to particular protein and corresponding gene, external links and extracted information from several sources (UniProt, NCBI GeneRif, Gene Ontology).

Protein view

<< Experiment view

I. Protein/Gene information Protein: eukaryotic translation elongation factor 1 alpha 1 Protein ID: ENSP00000330054 Coverage: 15.15 %, isoform-specific peptides: 1 Synonyms: CCS-3, CCS3, EE1A1, EEF-1, EEF1A, EF-Tu, EF1A, GRAF-1EF, HNGC:16303, LENG7, PTI1, eEF1A-1 External: MIM:130590, HGNC:HGNC:3189, Ensembl:ENSG00000156508, HPRD:00559, Entrez:1915 UniProt summary NCBI GeneRif Gene Ontology II. Protein identification Sequence coverage

Peptides with sequence alteration

Peptide / Spectral count

modifications

Detrimental Affected effect Domains

Alternative mass interpretation

Sequence coverage The sequence coverage shows the peptide and its identified subsequences, together with identified alterations.

Gene Ontology

II. Protein identification

Sequence coverage

М		К		К	Т	Н	I	Ν	I	V	۷	I			V				К		Т	Т	Т		Н		I	Y	К				I		K	R	Т	I	Е
К			K	Е	А	А	Е	М		K			F	K	Y	A	W	V			K		К	А		R	Е	R		Ι	Т	I		I			W	К	F
Е	Т		K	Y	Y	۷	т	I	I	D	Α	Ρ	G	Н	R		F	I	К	Ν	М	I	Т		Т			А			A	V		I	V	А	А		V
				A				K	Ν							A			Α	Y	Т			V	K			I	V		V	Ν	K	М			Т	Е	Ρ
Ρ	Y		Q	K	R	Y	Е	Е	I	۷	Κ		V		Т	Y	I	K	К	I		Y	Ν			Т	۷	А	F	V		I			W	Ν			Ν
М					А	Ν	М		W		K		W	K	V	Т	R	K	D	G	Ν	Α	S	G	т	Т	L	L	E	А	τ	D	С	I	L	Ρ	Ρ	Т	R
-																																							_
Ρ	т	D	K	Ρ	L	R						V		K							V					V	E	Т	G	v	L	κ	Ρ	G	M	V	V	т	F
						R T																									_			_				D	
A	Ρ	۷	N	۷	Т	T	E	v			V		Μ		Н	E	A				A		Ρ			N	V			N	v	K	N	V		V	K		V
R	P R	V G	N	V	T	T G	E D	V S	K K	S	V D	E P	M P	H	H E	E A	A			E T	A A	L Q	P V	G	D I	N	V N	G	F P	NG	v Q	K	N	V		V Y	K		V
R	P R D	G G	N N H	V	T A A	T G	E D I	V S A	К К	S N K	V D F	E P A	M P E	H M L	H E K	E A E	A A K	L G I	S F D	E T R	A A R	L Q S	P V G	G I K	D I K	N L L	V N E	G H D	F P	N G P	V Q K	K I F	N S L	V A K		V Y G	K A D	D P A	V V A

Peptides with sequence alteration

Peptide / Spectral count	modifications	Detrimental effect	Affected Domains	Alternative mass interpretation
DGNASGTTLLEA[L>V]DCILPPTRPTDKPLR /1	[14]:Carbamidomethyl	60.0 %	IPR004539 IPR027417 IPR000795	

D (1911)

Detrimental effect Clicking the number of detrimental effect at particular peptide expands the aggregated value into its consituent parts as predicted by dbNSFP.

NORI Generii

Gene Ontology

_

II. Protein identificat[®] Details

	Dotalo			
Sequence coverag	Predictor	Effect	Predictor	Effect
MGKEKTHINI V KFEKEAAEMG K	GERP++ RS	22.7%	phyloP46way primate	68.6%
ETSK YYVTII D GEFEAGISKN G	phyloP100way vertebrate	25.0%	MutationTaster converted	70.8%
PYSQKR YEEI V MLEPSANMPW F	SiPhy 29way logOdds	30.5%	FATHMM	71.1%
PTDKPLRLPL Q	phyloP46way placental	30.8%	LR	73.7%
APVNVTTEVK S RRGNVAGDSK N	phastCons100way vertebrate	39.6%	RadialSVM	75.5%
LDCHTAHIAC K IVDMVPGKPM C	CADD raw	52.4%	MutationAssessor	77.1%
VDKKAAGAGK V	Polyphen2 HDIV	59.0%	phastCons46way placental	80.4%
Peptides with sequ	VEST3	63.4%	phastCons46way primate	81.0%
	LRT converted	64.4%	SIFT converted	87.9%
Peptide / Spectral count				
DGNASGTTLLEA <mark>(L>V)</mark> DCILPPTR /1	PTDKPLR [14]:Carbamidometh	yl <u>60.0</u>	% IPR004539 IPR027417 IPR000795	

Alteration details For more detailed information, the alteration detail contains the source of this alteration, where it was observed and source-specific details.

228497, 74228496: CTG >
LINC-JP
Liver Cancer - NCC, JP
MU864280
G
G
С
not tested
primary tumour
HOC
None

2.2.3 Peptide view

One could also see the details of identification of particular peptide from spectral match. This view contains additional mass-spectrometric data such as charge, *mz* and retention time. The E-Value column contains log10 of statistical significance of spectral match (X!Tandem, HyperScore). Further one could see alternative explanations of observed mass changes with respect to reference peptide. In this case, there are no other explanations known. The modifications are drawn from UniMod.

Peptide view

<< Protein view

Peptide sequence: DGNASGTTLLEAVDCILPPTRPTDKPLR

Peptide-spectrum matches

sequence	modifications	charge	MZ	RT	XTandem - Log ₁₀ E-Value	Alteration	Alternative intepretation of alteration
DGNASGTTLLEAVDCILPPTRPTDKPLR	15: (Carbamidomethyl)	3	1003.189819	4730.4682	2.823909	L>V (-14.0156 Da)	

3 Task submission

For the ability to submit tasks, user needs to be registered by filling up the corresponding registration form.

3.1 Submission

During the submission, the usual mass-spectrometric information is filled in; moreover, last configuration of modifications can be reloaded. The user is informed on completion of the evaluation, if e-mail is provided. Please note that although decryptor supports wide variety of modifications (obtained from UniMod), its use with data with unusual modifications was not tested and its performance is not guaranteed.

MS/MS files [.mzt/L, .mzX/L, .mz	gf; Spectra	ptor a convertor) (max: 4 GB)	
Choose Files No file chosen			
(7) Fixed modifications		(?) Filter modifications	
	* <<	(7) Modifications	
(7) Variable modifications		15dB-biotin (C +626.39 Da) 2-succinyl (C +117.02 Da) 2HPG (R +282.05 Da) 3-deoxyglucosone (R +144.04 II 3-ulifo (N-term +183.98 Da) 4-ONE (C +154.10 Da) 4-ONE (C +154.10 Da)	•
(?) Protease			
trypsin			•
(7) Fragmentation			
CD			•
(7) Precursor tolerance			
10 ppm			
(7) Fragment tolerance			
0.5 Da			
(7) Mail			
hruska.miro@gmail.com			

decrypt

3.2 Selection of results

The results can be then accessed through the experiment list.

ecryptor submit tasks experiment list

user (hruska.miro@gmail.cor

Experiment list view

id	info	status	time
65586297004beb43_0000	109_03	view	2016-11-01 20:08:01
1410f4c5c8f33b91_0000	10_01	view	2016-11-01 15:59:16
281867cc686b8072_0000	spe-X	view	2016-11-01 15:56:52
ede85d14f0c35939_0000	SILAC_R2-20_TR-C_	view	2015-11-15 16:11:42
bdf38825a6f7cfde_0000	act	view	2015-11-15 16:08:05
9cd623b520780c97_0000	SILAC_R2-05_TR-B_	view	2015-09-11 09:32:40
6d357e3d96d86bcc_0000	Peptide_011	view	2015-09-11 09:29:05
3e0947b0df7ec122_0000	act	view	2015-09-11 08:53:44
871422d35bd4e066_0000	act	view	2015-09-11 08:49:55
69aa7cc5c10ed076_0000	act_00000_00020	view	2015-09-11 08:26:14
91b5a6f362795ba6_0001	act2	view	2015-04-15 14:05:13
91b5a6f362795ba6_0000	act	view	2015-04-15 14:05:13